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Nonstructural 5A protein activates b-catenin signaling
cascades: Implication of hepatitis C virus-induced liver pathogenesisq
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Background/Aims: The nonstructural 5A (NS5A) protein of hepatitis C virus (HCV) has been implicated in HCV-

induced liver pathogenesis. Wnt/b-catenin signaling has also been involved in tumorigenesis. To elucidate the molecular

mechanism of HCV pathogenesis, we examined the potential effects of HCV NS5A protein on Wnt/b-catenin signal trans-

duction cascades.

Methods: The effects of NS5A protein on b-catenin signaling cascades in hepatic cells were investigated by luciferase

reporter gene assay, confocal microscopy, immunoprecipitation assay, and immunoblot analysis.

Results:b-Catenin-mediated transcriptional activity is elevated by NS5A protein, in the context of HCV replication, and

by infection of cell culture-produced HCV. NS5A protein directly interacts with endogenous b-catenin and colocalizes with
b-catenin in the cytoplasm. NS5A protein inactivates glycogen synthase kinase 3b and increases subsequent accumulation

of b-catenin in HepG2 cells. b-Catenin was also accumulated in HCV patients’ liver tissues. In addition, the accumulation

of b-catenin in HCV replicon cells requires both activation of phosphatidylinositol 3-kinase and inactivation of GSK3b.

Conclusions: NS5A activates b-catenin signaling cascades through increasing the stability of b-catenin. This modulation

is accomplished by the protein interplay between viral and cellular signaling transducer. These data suggest that NS5A

protein may directly be involved in Wnt/b-catenin-mediated liver pathogenesis.
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1. Introduction

Hepatitis C virus (HCV) is the causative agent of
non-A, non-B hepatitis. HCV infection often leads
to chronic hepatitis, liver cirrhosis, and ultimately
hepatocellular carcinoma (HCC) [1]. However, the
molecular events that lead to HCC development dur-
ing HCV infection are poorly defined. HCV is an
enveloped, positive-sense RNA virus belonging to
the Flaviviridae family. Its genome encodes a single
polyprotein precursor of more than 3000 amino acids,
which is cleaved by host and viral proteases at the
endoplasmic reticulum, yielding structural (core E1
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and E2) and nonstructural (p7, NS2 to NS5B) pro-
teins. The nonstructural 5A (NS5A) protein is gener-
ated by the NS3/4A serine protease. NS5A is a
phosphoprotein consisting of 447 amino acid residues.
NS5A exists in two forms of polypeptide, p56 and
p58, which are phosphorylated at serine residues by
cellular kinase [2]. Phosphorylation is involved in
the HCV life cycle [3]. NS5A protein is localized in
the cytoplasm and forms a part of the HCV RNA
replication complex [4]. NS5A is a multifunctional
protein involved in cellular signal modulations.
NS5A modulates interferon (IFN) signaling through
protein kinase R (PKR) interaction and also interferes
with host cell signaling pathways, including Grb2 and
p85 subunits of phosphatidylinositol 3-kinase (PI3K)
[5–7]. In addition, NS5A protein has been found to
stimulate anchorage-independent growth of murine
fibroblast cell lines [8] and induced chromosome insta-
bility by mitotic cell cycle dysregulation of HepG2
cell lines [9].

The Wnt/b-catenin signaling pathway was initially
discovered by genetic analysis in the wing develop-
ment of Drosophila [10] and has now been implicated
in many human cancers. The Wnt family of proteins
consists of 350–380 amino acids that serve as the
ligands for Frizzled receptors [11]. There are 19
known Wnt ligands in humans [12]. These proteins
are highly conserved throughout evolution and play
major roles in embryonic patterning, cell polarity,
and cell fate determination [12]. b-Catenin was first
identified on the basis of its association with cadherin
adhesion molecules and is now widely recognized as a
key molecule of the Wnt signaling cascade [13]. In the
presence of Wnt-1, GSK3b activity is suppressed,
which in turn leads to b-catenin stabilization. Abnor-
malities in the regulation of Wnt/b-catenin signaling
have been implicated in various human cancers,
including colon cancer, HCC, leukemia, and mela-
noma [14,15]. It has previously been shown that muta-
tions of b-catenin, specifically stabilizing mutations in
exon 3 [16], were detected in approximately 30% of
primary HCCs [17,18]. Furthermore, the Wnt/b-cate-
nin signaling pathway has been identified as a com-
mon target for perturbation by viruses. For example,
hepatitis B virus X protein achieves b-catenin stabil-
ization by suppressing GSK3b activity in a Src-
kinase-dependent manner [19]. The Vpu protein of
HIV-1 binds to bTrCP and blocks the ubiquitinylation
and proteasomal degradation of b-catenin [20]. In
addition, HCV NS5A protein is involved in PI3K-
mediated b-catenin stabilization [21]. In the present
study, we demonstrated that NS5A-activated b-catenin
signaling cascades through the stabilization of b-cate-
nin and that this activity may play an important role
in HCV pathogenesis.
2. Materials and methods

2.1. Plasmids

Plasmids expressing NS5A (genotype 1b), Myc-tagged NS5A,
GST-NS5A, and GFP-NS5A were described elsewhere [22,23]. Either
Myc-tagged NS3 or NS4B of HCV (genotype 1b) expression plasmid
was generated by PCR and inserted into the EcoRI site in pEF6A/
His-Myc vector (Invitrogen, Carlsbad, CA, USA). NS5A mutants were
constructed using either the pFlag-CMV-2 or pEF6A/His-Myc vector.
Both wild-type and mutants of b-catenin were subcloned into the Bam-
HI site of the pEF6B/His-Myc vector. pTOPFLASH, pFOPFLASH,
and TCF-4 expression plasmids were kindly provided by Drs. B.
Vogelstein and K. Kinzler (Johns Hopkins University, Baltimore,
Maryland, USA). Flag-tagged b-catenin was obtained from Dr. Eric
R. Fearon (University of Michigan, Ann Arbor, USA), and HA-
human GSK3b was provided by Dr. J. Woodgett (Samuel Lunenfeld
Research Institute, Mount Sinai Hospital, Toronto, Ont., Canada).

2.2. Cell culture, transfection, and HCV infection

Huh7, HepG2, and Cos7 cells were grown as described previously
[24]. Stable cells expressing NS5A were grown as reported previously
[23]. HCV subgenomic replicon cells were described elsewhere [23].
RNA prepared from the infectious cDNA clone (JFH-1) was transfec-
ted into Huh7 cells, and cell culture-produced HCV was generated as
described previously [25].

2.3. Luciferase reporter gene assays

Luciferase and b-galactosidase assays were performed as described
previously [24] using 1 lg reporter plasmid (pTOPFLASH or pFOP-
FLASH) and 0.1 lg of pCH110 reference plasmid (Amersham Biosci-
ences, GE Healthcare UK Ltd., Buckinghamshire, UK) containing the
Escherichia coli lacZ gene under the control of the Simian virus 40
promoter.

2.4. Immunoblot analysis

Cell lysates were prepared and immunoblotted as described previ-
ously [23]. Quantification of the band intensity was determined using
a calibrated GS-800 densitometer (Bio-Rad, Hercules, CA, USA).

2.5. Glutathione S-transferase pull-down assay and

coimmunoprecipitation

Glutathione S-transferase (GST)-NS5A fusion protein was
expressed and purified as described previously [23]. Both in vitro and
in vivo binding assays between NS5A and b-catenin, and coimmuno-
precipitation assay were performed as described elsewhere [24].

2.6. Confocal microscopy

Cos7 cells grown on cover glass were cotransfected with the GFP-
NS5A and Flag-catenin expression plasmids, fixed in 4% paraformal-
dehyde and 0.1% Triton X-100, and analyzed using the LSM 510 laser
confocal microscopy system (Carl Zeiss, Inc., Thornwood, New York,
USA), as reported previously [22].

2.7. Patient tissues

Human liver tissue specimens were obtained from the Liver Cancer
Specimen Bank at Yonsei University in Seoul, South Korea. All patients
participating in this study gave informed consent before surgery, and the
use of human tissue for this research was authorized by the Institutional
Review Board of the College of Medicine at Yonsei University.



C.-Y. Park et al. / Journal of Hepatology 51 (2009) 853–864 855
2.8. Statistical analysis

The data are presented as mean ± SD. The Student t test was used
for statistical analysis. P < 0.05 was considered statistically significant.
Error bars represent SDs of three independent experiments.
3. Results

3.1. HCV NS5A protein activates TCF-4 dependent

transcriptional activity

The Wnt/b-catenin signaling cascade controls the cel-
lular transcriptional properties of DNA-binding pro-
teins of the T-cell factor/lymphoid enhancer factor
(TCF/LEF) family. In the presence of Wnt, b-catenin
associates with TCF transcription factors. The TCF/b-
catenin complexes bind to DNA and activate Wnt target
genes. Because NS5A has been shown to have pleiotro-
pic functions in many cellular signaling events, we first
assessed the effects of NS5A protein on Wnt/b-catenin
signaling by measuring TCF-4 dependent transcrip-
tional activity. NS5A stable cells were transfected with
reporter plasmids containing either wild-type (pTOP-
FLASH) or mutant (pFOPFLASH) TCF-4 binding sites
[26]. The pTOPFLASH or pFOPFLASH reporter gene
contains either multimerized wild-type or mutant
TCF-4, with the binding site positioned at 50 of the lucif-
erase reporter gene, respectively. At 24 h after transfec-
tion, the luciferase assay was performed. As shown in
Fig. 1A, endogenous reporter activity was maintained
at a basal level, and this activity was 3-fold activated
by NS5A protein alone. We found that TCF-4-depen-
dent transcriptional activity was also activated by tran-
siently expressing NS5A protein in Huh7 cells (data not
shown). Wnt/b-catenin signaling was not activated by
the Wnt ligand itself in Huh7 cells (data not shown),
as reported previously [19]. However, Wnt/b-catenin
signaling was activated in cells cotransfected with
TCF-4 and Flag-catenin expression plasmid, and this
TCF-4 dependent transcriptional activity was approxi-
mately 11-fold activated by NS5A protein (Fig. 1A).
To investigate the possible impact of NS5A protein on
TCF-4-dependent transcription, we determined Wnt/b-
catenin signal activation in the absence of ectopic
b-catenin transfection. For this purpose, stable cells
expressing either NS5A or vector were cotransfected
with pTOPFLASH reporter and TCF-4 plasmids in
the absence or presence of b-catenin. We found that
endogenous reporter activity was approximately 3-fold
activated by NS5A protein and that TCF-4-dependent
transcriptional activity was also approximately 3-fold
increased by TCF-4 in the absence of b-catenin in
NS5A stable cells (Supplementary Fig. 1, lane 2 vs. lane
5). However, TCF-4-dependent transcriptional activity
was approximately 8-fold activated in cells cotransfected
with TCF-4 and b-catenin (Supplementary Fig. 1, lane 3
vs. lane 6), indicating that Wnt/b-catenin signal activa-
tion was mediated through b-catenin. Huh7 cells trans-
fected with pFOPFLASH reporter plasmid were not
activated in transcriptional activity regardless of NS5A
protein (Fig. 1A). We further investigated whether the
stimulatory effect of NS5A on Wnt/b-catenin signaling
might occur in the context of viral RNA replication.
Both IFN-cured and HCV subgenomic replicon cells
were cotransfected with TCF-4 and Flag-catenin expres-
sion plasmid, and luciferase reporter gene assay was per-
formed. Fig. 1B showed that TCF-4-dependent
transcriptional activity in HCV subgenomic replicon
cells was increased by 2.4-fold compared with IFN-
cured cells. We then asked whether Wnt/b-catenin sig-
naling might be activated in HCV-infected cells. Huh7
cells were either mock-infected or infected with cell cul-
ture-produced HCV [25]. At 3 days after infection, cells
were transfected with pTOPFLASH reporter plasmid.
Luciferase reporter activity was then determined at 24
h after transfection. Fig. 1C showed that TCF-4-depen-
dent transcriptional activity in HCV-infected cells was
increased by 2.8-fold as compared with mock-infected
Huh7 cells. This is the first report that TCF-4-dependent
transcriptional activity is activated by HCV infection.

3.2. b-Catenin is accumulated in NS5A stable cells and

HCV replicon cells

Wnt/b-catenin signaling activation leads to stabiliza-
tion of cytosolic b-catenin. To investigate whether the
b-catenin level can be accumulated by HCV NS5A pro-
tein, we analyzed the b-catenin level in NS5A stable
cells. HepG2 cells expressed two forms of b-catenin: a
wild-type and a mutant form lacking amino acids 25–
140 [17,27]. The mutant form of b-catenin cannot be
phosphorylated and thus accumulated in the nucleus,
where it was constitutively active. Two forms of b-cate-
nin can be detected because this anti-b-catenin antibody
binds to the C terminus of b-catenin. Fig. 2A showed
that wild-type b-catenin was accumulated in NS5A sta-
ble cells but not in control vector stable cells. On the
other hand, the protein level of mutant b-catenin was
unchanged in both control and NS5A stable cells. We
found that b-catenin levels were also increased in
HepG2 cells transiently expressing NS5A protein and
in other isolates of NS5A stable cells (data not shown),
confirming that this phenomenon was not caused by
clonal selection of NS5A stable cells. To further examine
whether the b-catenin level was also increased in the
context of HCV RNA replication, we analyzed the
b-catenin level in both IFN-cured and HCV subgenomic
replicon cells. As expected, b-catenin was accumulated
in HCV subgenomic replicon cells but not in IFN-cured
cells (see Fig. 2B, top panel). Furthermore, the nonphos-
phorylated b-catenin level was also increased in the
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Fig. 1. HCV NS5A proteins activates TCF-4-dependent transcriptional activity. (A) Huh7 cells stably expressing either vector or NS5A were transfected

with either pTOPFLASH (pTOP) or pFOPFLASH (pFOP) reporter plasmids together with the indicated expression plasmids. The total DNA

concentration in each transfection mixture was kept constant by adjusting with an empty vector. At 24 h after transfection, cells were harvested and

luciferase activities were determined. Equal amounts of cell lysates were subjected to immunoblotting with anti-NS5A polyclonal antibody and anti-actin

monoclonal antibody (lower two panels). (B) Both IFN-cured and HCV subgenomic replicon cells were transfected with pTOP reporter plasmid together

with the indicated expression plasmids. Equal amounts of cell lysates were subjected to immunoblotting with anti-NS5A polyclonal antibody and anti-actin

monoclonal antibody (lower two panels). (C) HCV infection activates TCF-4-dependent transcriptional activity. Huh7 cells were either mock-infected or

infected with cell culture-produced HCV. At 3 days after infection, cells were transfected with pTOP reporter plasmid. Cells were harvested at 24 h after

transfection and luciferase activities were determined. Equal amounts of cell lysates were subjected to immunoblotting with anti-NS5A polyclonal

antibody and anti-actin monoclonal antibody (lower two panels).
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HCV subgenomic replicon cells (Fig. 2B, second panel).
We then examined whether the b-catenin level was also
increased by HCV infection. We analyzed the b-catenin
level in both mock-infected and HCV-infected cells.
Indeed, the b-catenin level in HCV-infected cells (JFH-
1) was also increased as compared with mock-infected
Huh7 cells (Fig. 2C). We then asked if the b-catenin
level could be altered in HCV patients. We therefore
compared the b-catenin levels in human livers of both
normal and HCV patients. As demonstrated in
Fig. 2D, the b-catenin level was maintained at the basal
level in normal human livers, whereas it was accumu-
lated in the liver of HCV patients. It was noteworthy
that the b-catenin level was higher in the tumor region
than in the nontumor region in many HCV patient sam-
ples (Fig. 2D and Supplementary Fig. 2).

It has been previously reported that active mutations
of b-catenin were found in HCC associated with HCV
infection [17,28]. It is well known that b-catenin is phos-
phorylated at codons 33, 37, 41, and 45 by GSK3b [29]
and CKI [30]. To investigate whether any b-catenin
genes used in our studies were mutated, we isolated total
RNAs from Huh7, IFN-cured, HCV subgenomic repli-
con cells, and HCV patients’ liver tissues. We analyzed
cDNA sequences of b-catenin and found that all cDNA
sequences were identical to wild-type sequences (data
not shown) and hence that b-catenin accumulations in
both NS5A stable cells and HCV subgenomic replicon
cells were not due to genetic mutations. In addition,
we determined the transcription level of b-catenin gene
in HCV subgenomic replicon cells. Using total cellular
RNA isolated from IFN-cured and HCV subgenomic
replicon cells, mRNA levels were determined by quanti-
tative PCR. There were no differences in the mRNA
levels of b-catenin in both IFN-cured and HCV subge-
nomic replicon cells (Supplementary Fig. 3A and B).
This result indicated that the accumulation of b-catenin
in HCV subgenomic replicon cells occurred at a post-
transcriptional level.

3.3. b-Catenin levels are increased in both cytosolic and
nuclear fractions in HCV subgenomic replicon cells

The activation of Wnt/b-catenin signaling involves
increasing the post-translational stability of b-catenin
and subsequent accumulation of cytoplasmic and
nuclear levels of b-catenin. To investigate the subcellular
distribution of b-catenin, both nuclear and cytoplasmic
fractions were prepared as reported previously [23],
and each fraction was analyzed by immunoblotting.
As shown in Fig. 3A, protein levels of both total
and nonphosphorylated catenin were increased in
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cytoplasmic and nuclear fractions in HCV subgenomic
replicon cells as compared with IFN-cured cells. In addi-
tion, immunofluorescent staining data showed that
nuclear translocated b-catenin proteins were observed
only in HCV subgenomic replicon cells but not in
IFN-cured cells (Fig. 3B). These results indicated that
TCF-4-dependent transcriptional activation observed
in NS5A expressing cells and in HCV subgenomic repli-
con cells were due to nuclear translocated b-catenin.

3.4. GSK3b is inactivated in NS5A stable cells and in

HCV subgenomic replicon cells

In Wnt/b-catenin signaling cascades, b-catenin levels
are regulated by GSK3b protein. Since b-catenin was
accumulated in NS5A stable cells and in HCV subge-
nomic replicon cells, we examined whether GSK3b
was inactivated in these cells by immunoblotting with
phospho-GSK3b antibody. The phosphorylated GSK3b
is inactive and hence unable to phosphorylate b-catenin,
resulting in accumulation of b-catenin in cells. Indeed,
the level of GSK3b phosphorylation at Ser9 residue
was increased in NS5A stable cells (Fig. 4A, middle
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confirmed this result by repeating these experiments
three times in HCV replicon cells, as demonstrated in
Fig. 5B. We further demonstrated that the phosphory-
lated GSK3b level was also decreased in HCV subge-
nomic replicon cells (Fig. 5A, lane 4).

3.6. HCV NS5A protein interacts with b-catenin both

in vitro and in vivo

Because NS5A protein stabilizes the b-catenin level
in hepatic cells, we speculated that NS5A might acti-
vate Wnt/b-catenin signaling through interaction with
b-catenin, which is a key molecule in the Wnt/b-catenin
signaling pathway. We first examined the interaction
between NS5A and b-catenin by in vitro GST pull-
down assay using GST and GST-NS5A fusion protein
expressed in E. coli. Cell extracts containing Flag-
tagged b-catenin were incubated with GST beads for
2 h at 4 �C. As shown in Fig. 6A, GST-NS5A selec-
tively bound to b-catenin, whereas GST failed to inter-
act with b-catenin. To further confirm in vitro
interaction between NS5A and b-catenin, we performed
a coimmunoprecipitation assay. Myc-tagged NS5A was
coexpressed with Flag-tagged b-catenin in Cos7 cells.
We took advantage of the high efficiency of the protein
expression level in Cos7 cells paired with a recombinant
vaccinia virus (vTF7-3) system, as reported previously
[23]. Cell lysates were immunoprecipitated with
anti-Flag monoclonal antibody, and the coprecipitated
protein was detected by immunoblot analysis using an
anti-Myc monoclonal antibody. Indeed, NS5A specifi-
cally interacted with b-catenin in vivo (Fig. 6B). We
confirmed this result by a reciprocal experiment using
an anti-Myc antibody for coimmunoprecipitation and
an anti-Flag antibody to detect coprecipitated protein
(Supplementary Fig. 4A). Next, we investigated
whether NS5A interacted with endogenous b-catenin
protein. Both IFN-cured and HCV subgenomic repli-
con cell lysates were immunoprecipitated with anti-
NS5A antibody, and bound proteins were analyzed
by immunoblotting with an anti-b-catenin monoclonal
antibody. Fig. 6C shows that NS5A interacts with
endogenous b-catenin protein. These data suggest that
NS5A protein may colocalize with exogenously
expressed b-catenin. To determine this possibility,
Cos7 cells were cotransfected with GFP-tagged NS5A
and Flag-tagged b-catenin expression plasmids, and
we examined the subcellular localization by confocal
microscopy. As shown in Supplementary Fig. 4B,
NS5A was localized in the cytoplasm, and b-catenin
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was localized in both the nucleus and cytoplasm. In the
merged image, two proteins were colocalized in the
cytoplasm. We have further confirmed the colocaliza-
tion of NS5A and b-catenin in Huh7 cells (data not
shown). Taken together, these data indicate that
NS5A specifically interacts with b-catenin both
in vitro and in vivo.
3.7. NS5A interacts with b-catenin through the N-terminal

region of NS5A and the ARM region 1–6 of b-catenin

To determine the region in NS5A that is responsible
for b-catenin binding, the interaction of b-catenin with
various deletion mutants of NS5A (Fig. 7A) was deter-
mined by a transfection-based coprecipitation assay in
Cos7 cells infected with the recombinant vaccinia virus
vTF7-3. As shown in Fig. 7B, b-catenin interacted with
an N-terminal region of NS5A (amino acids 1–147).
Next, we determined the region in b-catenin that is
responsible for NS5A binding. We constructed various
deletion mutants of b-catenin (Fig. 7C) and the binding
domain was determined as described above. Fig. 7D
showed that NS5A interacted with either N-terminal
or C-terminal deletion mutants of b-catenin (M1 and
M4, respectively). However, a mutant lacking the N-ter-
minus plus ARM 1–6 of b-catenin (M2) no longer inter-
acted with NS5A, suggesting that NS5A interacted with
b-catenin through ARM 1–6 (amino acids 153–390) of
b-catenin.

To investigate whether the N-terminal region of
NS5A protein mediates the activation of TCF-4-depen-
dent transcriptional activity and the accumulation of b-
catenin, Huh7 cells transfected with either wild-type or
mutant forms of NS5A were analyzed for luciferase
reporter activity and b-catenin level. Indeed, the N-ter-
minal region of NS5A protein was involved in TCF-4-
dependent transcriptional activation (Fig. 8A) and an
accumulation of b-catenin in Huh7 cells (Fig. 8B). How-
ever, neither TCF-4 dependent transcriptional activity
nor b-catenin accumulation was affected by the middle
region of NS5A protein. These data further support that
b-catenin is accumulated through interaction with the
N-terminus of NS5A protein.

3.8. HCV NS5A protein inhibits protein interaction

between GSK3b and b-catenin

Since NS5A interacted with b-catenin both in vitro
and in vivo, we examined the possibility that NS5A
might affect GSK3b and b-catenin interaction. For this
purpose, Flag-tagged b-catenin and HA-tagged GSK3b
were cotransfected with either NS5A or other control
plasmids in Cos7 cells infected with the recombinant
vaccinia virus vTF7-3. At 12 h after transfection, cell
lysates were immunoprecipitated with anti-HA
antibody, and then coimmunoprecipitated catenin was
analyzed by immunoblot analysis using anti-Flag mono-
clonal antibody. As reported previously, GSK3b formed
a complex with b-catenin, and this complex was signifi-
cantly inhibited by NS5A protein (Supplementary
Fig. 5A, lane 5), but not by vector or NS3 protein. Inter-
estingly, NS4B slightly inhibited GSK3b/b-catenin com-
plex formation. We further confirmed that N-terminal
region of NS5A protein mediated the inhibition of
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GSK3b/b-catenin complex formation (Supplementary
Fig. 5B). Because the protein expression levels of
GSK3b and b-catenin were not affected by NS5A, these
results might explain the underlying mechanism of



0.5

1.0

1.5

2.0

2.5

3.0

1                     2.3                1.6                 0.8Ratio 
(catenin/actin)

β-catenin

β-actin

Myc

F
ol

d 
in

du
ct

io
n

A B

WTNS5A-Myc N MVec Cell  lysate

WT NS5A-MycN MVec

* **
*

Fig. 8. Amino terminal region of NS5A protein mediates TCF-4-dependent transcriptional activation and b-catenin accumulation in hepatoma cells. (A)

Huh7 cells were transfected with pTOPFLASH reporter plasmid together with the indicated expression plasmids. At 24 h after transfection, cells were

harvested and luciferase activities were determined. *P < 0.05, vector transfected cells vs. wild-type NS5A or vector transfected cells vs. mutant

expressing N-terminal region of NS5A; **P < 0.01, N-terminal region of NS5A vs. middle (M) region of NS5A. (B) Huh7 cells were transfected with

either wild-type or mutant forms of NS5A. Total cell lysates were immunoblotted with anti-b-catenin antibody (top panel). Expressions of both wild-type

and mutants of NS5A were verified using the same cell lysates by immunoblotting with anti-Myc monoclonal antibody (bottom panel). Quantification of

the band intensity was determined by using a calibrated GS-800 densitometer.

862 C.-Y. Park et al. / Journal of Hepatology 51 (2009) 853–864
b-catenin-dependent signaling activation by NS5A
protein.
4. Discussion

HCV is the major cause of non-A, non-B hepatitis,
which frequently leads to liver cirrhosis and HCC. To
date, the molecular events during HCV infection that
lead to HCC development have been poorly defined.
NS5A is a pleiotropic protein involved in viral RNA
replication and modulation of the physiology of the host
cells. NS5A interacts with cellular signaling transducers,
transcriptional activation machinery, and cell cycle reg-
ulatory kinases. NS5A has also been associated with cel-
lular transformation in vitro [8,31]. Although the
oncogenicity of NS5A is controversial [32], NIH3T3
cells transfected with NS5A resulted in a transformed
phenotype defined by increased proliferation and colony
formation in soft-agar medium [8,31]. To investigate the
molecular mechanism of HCV-induced pathogenesis, we
investigated the potential involvement of HCV NS5A
protein in the Wnt/b-catenin signaling pathway. Wnt/
b-catenin signaling is initiated by the binding of Wnt
ligand to a receptor encoded by the Frizzled gene.
Activation of the receptor phosphorylates Disheveled
protein, which then prevents glycogen synthase kinase
3b (GSK3b) from phosphorylating b-catenin. Unphos-
phorylated b-catenin escapes from the E3 ubiquitin
pathway, resulting in accumulation and translocation
into the nucleus. In the nucleus, b-catenin forms a tran-
scription complex with TCF/LEF and leads to the
activation of target genes. Aberrant activations of Wnt
target genes are considered to be the basis for tumori-
genesis. Since NS5A protein is implicated in HCV
pathogenesis, we asked whether NS5A could modulate
b-catenin signaling cascades. We demonstrated that
TCF-4-dependent transcriptional activity was increased
in the presence of NS5A, in the context of HCV replica-
tion and in HCV infection. NS5A protein increased the
stability of b-catenin through protein interplay in
hepatoma cell lines, and thus b-catenin was accumulated
in NS5A stable cells and in the HCV replicon cells.
b-Catenin accumulation occurred in both cytosolic and
nuclear fractions in HCV subgenomic replicon cells.
Quantitative PCR data indicated that the accumulation
of b-catenin occurred at post-transcriptional level. Since
mutations in b-catenin were associated with b-catenin
stabilization in HCC [16–18], we have sequenced all
b-catenin genes used in our studies and confirmed that
there was no mutation in b-catenin genes.

Activating mutations of Wnt components lead to
nuclear localization of b-catenin and are involved in
tumor formation and development [33]. Nevertheless,
Wnt-independent signaling is also involved in regulation
of b-catenin transactivation and tumorigenesis [34].
b-Catenin-TCF/LEF-1 signaling can be activated by
growth factors, such as epidermal growth factor
(EGF), hepatocyte growth factor, insulin-like growth
factor I, insulin-like growth factor II, and insulin
[35–38]. In response to insulin stimulation, phosphati-
dylinositol 3-kinase-activated Akt phosphorylates
GSK3b at Ser9, which leads to inactivation of GSK3b
and augmentation of b-catenin-TCF/LEF-1 transcrip-
tional activity [39]. Interestingly, viral proteins also
increase the stability of b-catenin through various mech-
anisms. Hepatitis B virus X protein stabilizes b-catenin
by suppressing GSK3b activity through Src kinase [19]
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and Erk [40]. Epstein–Barr virus latent membrane pro-
tein 2A activates PI3K and Akt, resulting in GSK3b
inactivation and b-catenin stabilization [41]. Tomita
et al. reported that the Tax protein of human T-cell leu-
kemia virus type 1 activates b-catenin through the Akt
signaling pathway [42]. Likewise, we demonstrated that
the phospho-GSKb (Ser9) level was increased in both
NS5A stable cells and HCV subgenomic replicon cells,
indicating that HCV-induced b-catenin accumulation
occurred through the inactivation of GSKb. It has pre-
viously been shown that NS5A activated PI3K and the
downstream effector serine/threonin kinase Akt/protein
kinase B [7], and that NS5A was involved in PI3K-Akt-
mediated b-catenin stabilization [21]. We also found that
b-catenin accumulation in HCV subgenomic replicon
cells required the activation of PI3K protein. We further
demonstrated that the accumulation of b-catenin was
mediated through protein interplay between HCV
NS5A and b-catenin. We consider that these two mech-
anisms are independent of each other in terms of b-cate-
nin accumulation.

NS5A directly interacted with b-catenin through the
amino terminal region of NS5A and the ARM region
1–6 of b-catenin. Protein interaction between NS5A and
b-catenin was confirmed by GST pull-down assay, coim-
munoprecipitation assay, and confocal microscopy.
Moreover, NS5A protein interacted with endogenous
b-catenin in HCV replicon cells. We also found that the
amino terminal region of NS5A protein activated TCF-
4 dependent transcriptional activity and increased the
protein level of b-catenin. We further showed that
NS5A increased the b-catenin stability by disrupting
GSK3b from complex formation with its b-catenin sub-
strate. It has previously been reported that T-antigen
encoded by the human neurotropic polyomavirus JCV
interacted with b-catenin and elevated the level of b-cate-
nin in cells due to prolonged stability of the protein [43]. In
JCV, the interaction of b-catenin with T-antigen facili-
tated the nuclear import of b-catenin. However, how
HCV NS5A increased the nuclear b-catenin level is
unclear because NS5A localizes in the cytoplasm,
although the nuclear localization signal exists at its C-ter-
minus. It is possible that NS5A may either form a struc-
tural barrier between b-catenin and GSK3b or inhibit
APC/Axin/GSK3b complex formation such that GSK3b
can no longer phosphorylate b-catenin and perform sub-
sequent ubiquitinylation. In fact, we demonstrated that
the HCV NS5A protein inhibited protein interaction
between GSK3b and b-catenin. We therefore speculate
that the accumulation of b-catenin in cytoplasm by
NS5A protein may facilitate the nuclear translocation
of b-catenin, and hence that more target genes will be
aberrantly activated in HCV patients. Taken together,
our results indicate that NS5A protein increases the
stability of b-catenin through protein interplay between
NS5A and b-catenin, and hence that Wnt/b-catenin sig-
naling is activated. We propose that NS5A protein
involved in aberrant Wnt/b signaling cascade may pro-
mote HCV pathogenesis.
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